

solid wire

Classifications			
EN ISO 24373	AWS A5.7	Material-No.	
S Cu 7158 (CuNi30Mn1FeTi)	ER CuNi	2.0837	

Characteristics and field of use

UTP A 387 is used for copper nickel alloys with up to 30 % nickel according to DIN 17664, such as CuNi20Fe (2.0878), CuNi30Fe (2.0882). Chemical industry, seawater desalination plants, ship building, offshore technique.

The weld metal of UTP A 387 is resistant to seawater and cavitation.

Typical analysis in %					
С	Mn	Ni	Cu	Ti	Fe
< 0.05	0.8	30.0	balance	< 0.5	0.6

Mechanical properties of the weld metal					
Yield strength R _{P0.2}	Tensile strength R _m	Elongation A ₅	Hardness	El. conduc- tivity	Melting range
MPa	MPa	%	НВ	s·m/mm²	°C
> 200	> 360	> 30	120	3	1180-1240

Welding instruction

V-butt weld with 70° included angle and root gap of 2 mm. Remove oxide skin to approx. 10 mm to the joint groove also on the backside of the weld.

Approvals

TÜV (No. 01624), GL

Wire diameter [mm]	Current type	Shielding gas (EN ISO 14175)	
0.8*	DC (+)	11	13
1.0*	DC (+)	11	13
1.2*	DC (+)	11	13
1.6*	DC (+)	11	13
*available on request			